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Abstract 

The concepts of semi-direct product, quasi semi-direct 
product and the method of constructing quasisym- 
metry (P-symmetry)groups [Krishnamurty, Prasad & 
Rama Mohana Rao (1978). J. Phys. A, 11, 805-811; 
(1980). J. Phys. A, 13, 1947-1956] have been explored 
and a general method of constructing quasisymmetry 
(P-symmetry) groups with the crystallographic space 
groups as generators is suggested. The study is 
restricted to only the cubic system for the chosen 
boundary condition T 2 = T 2 = T 2 = E. The minor 
quasisymmetry cubic space groups so obtained are 
associated with the one-dimensional complex and 
two-dimensional real irreducible representations of the 
generator groups using the ideas of little groups and 
their one-dimensional allowable irreducible represen- 
tations. The symmorphic cubic space groups F23, 
F432 and the non-symmorphic cubic space groups 
Fd3, Fd3m are exemplified. For the rest of the cubic 
space groups the results obtained are tabulated. Some 
suggestions have been made as to the possible studies in 
which the groups obtained here can be applied. 

1. Introduction 

The work of Shubnikov (1951) has made scientists the 
world over feel that the concept of antisymmetry can be 
profitably exploited in crystallographic point-group and 
space-group studies. Zamorzaev (1957) and Belov, 
Neronova & Smirnova (1955, 1957) have actually 
translated this feeling into very useful work and 
consequently the dichromatic space groups were 
derived. Later the very idea of antisymmetry has been 
considered from several different points of view and 
generalizations of this concept have been proposed and 
worked out. A few instances of these generalizations 

"[" Results submitted in brief for presentation at the XII Inter- 
national Colloquium on Group Theoretical Physics, Trieste, 5-10 
September 1983. 
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that emerged are not out of place here, for example, 
colour symmetry (Belov & Tarkhova, 1956; Belov, 
1956; Indenbom, 1959); polychromatic symmetry 
(Indenbom, Belov & Neronova, 1960); antisymmetry 
of different kinds (Zamorzaev & Sokolov, 1957; 
Zamorzaev, 1958, 1962, 1963); cryptosymmetry 
(Niggli & Wondratschek, 1960, 1961); quasisymmetry 
(Zamorzaev, 1967), etc. The method of constructing 
different colour symmetry groups in a variety of ways 
has been discussed and the results tabulated in several 
Russian publications. For instance, they are tabulated 
as the antisymmetry point groups and space groups in 
the Shubnikov groups by Koptsik (1966), as the colour 
symmetry groups G tp) isomorphic with the crystal- 
lographic point groups G by finding the normal 
subgroups H of G and forming the direct, semi-direct 
and quasi products of H with the generating colour 
groups G cp)* or with the groups G tp~* (mod G*). A 
tabular representation of the dichromatic cubic space 
groups obtained from the non-equivalent alternating 
representations of the symmorphic space groups that 
are reciprocal to the underlying point space groups of 
the considered ones was accomplished by 
Kirshnamurty & Gopala Krishna Murty (1968, 1969). 

Colour symmetry groups of all categories were 
constructed from the classic ones by means of the 
one-dimensional (1D) complex representations (Inden- 
born, 1959) using the tables of the fundamental unitary 
representations of Fedorov groups (Feddeev, 1964). 
Zamorzaev (1969, 1971) constructed the Belov groups 
of index 3, 4 and 6 by restricting himself to the cyclic 
groups P = {p, p2, ..., pm= 1 } isomorphic to the factor 
groups ~0/~0" by choosing m = 3, 4 or 6 and p = 

( ;  2 ... 1 ) .  The theory of group representation 
. , ,  

was applied by Koptsik & Khuzukeev (1972) to  
correct the list of Belov groups derived by Zamorzaev 
(1969, 1971) and to derive the new four- and six-colour 
space groups with non-cyclic colour permutations p ,,-, 
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~0/~0", ~0A~0*. A one-to-one correspondence between the 
multiple representations of the Fedorov groups and the 
Belov groups for any crystallographic number of 
colours was also established. 

Generalizations of Shubnikov's antisymmetry and 
Belov's colour symmetry were enveloped by the 
concept of P-symmetry introduced by Zamorzaev 
(1967) and discussed in detail by Shubnikov & Koptsik 
(1974). Whenever the generator group G can be 
expressed as G = S A T of two of its constituent 
subgroups S and T, Krishnamurty, Prasad & Rama 
Mohana Rao (1978a) established a general method of 
obtaining quasisymmetry (P-symmetry) groups as 
semi-direct products. In the case of those generators 
which can be written as a quasi semi-direct product, i.e. 
G = H o G (mod H), similar results as in the case of 
semi-direct products were obtained (Krishnamurty, 
Prasad & Rama Mohana Rao, 1980). In either case the 
obtained minor quasisymmetry groups were asso- 
ciated with the irreducible representations (IRs) of the 
generator groups using the concept of allowable 
irreducible representations (AIRs) of the little groups 
that induce the respective degenerate IRs of the 
generator groups. 

In the present paper, the general method of construc- 
tion of quasisymmetry groups as semi-direct and quasi 
semi-direct products (Krishnamurty et al., 1978a; 
1980) is explored to construct minor quasisymmetry 
groups with Fedorov groups as generators. In § 2, the 
connection between the semi-direct and quasi semi- 
direct products with those of the symmorphic and 
non-symmorphic groups is briefly dealt with for the 
sake of completeness. In § 3, the consequent develop- 
ments of the concept of P-symmetry, the different 
aspects on the applications of generalized colour 
symmetry and the position of the P-symmetry groups 
vis-a-vis  the Wreath product groups is discussed 
elaborately. In § 4, the method of construction of minor 
quasisymmetry space groups is exemplified in the case 
of both symmorphic and non-symmorphic cubic space 
groups for the chosen boundary condition T2x = T~ = 
T~ = E, considering the symmorphic cubic space 
groups F23, F432 and the nonsymmorphic ones F d 3 ,  
F d 3 m .  The minor quasisymmetry cubic space groups 
generated are associated in § 5 with the appropriate 1D 
complex and 2D real IRs of the generator groups using 
the ideas of little groups and their 1D AIRs. In § 6, 
the results obtained are discussed briefly and some 
suggestions have been made as to the possible studies in 
which the groups obtained here can be applied. 

It is well known that space groups are symmetry 
groups of crystals. As such, a knowledge of the minor 
quasisymmetry groups generated by them would be 
useful. In literature, the minor quasisymmetry groups 
generated and associated with the 1D alternating IRs of 
the crystallographic space groups are available, though 
they are not always termed minor quasisymmetry 

groups and expressed as semi-direct products .  
However, a connected account of the minor groups 
(obtained as semi-direct products) associated with the 
non-degenerate complex IRs and degenerate IRs of the 
space groups is not so readily available as far as our 
knowledge goes.* Hence an extensive tabulation of the 
minor quasisymmetry cubic space groups associated 
with the 1D complex and 2D real IRs is undertaken in 
the present paper, prompted by the feeling that 
physicists will certainly stand to gain by making 
extensive use of these groups in their future in- 
vestigations. The nomenclature adopted for the 
Fedorov cubic space groups is mostly the International 
notation (Bradley & Cracknell, 1972; Henry & 
Lonsdale, 1952). 

2. Symmorphic and non-symmorphic groups - 
semi-direct and quasi semi-direct products 

Let H be any subgroup of G, and let G = Hg~U Hg2U 
• .. UHgs; gi  = hi = E is a decomposition of G into 
distinct right cosets. In addition, let H be a normal 
subgroup of G and let h l, h 2 . . . . .  h,,, E H. If we 
introduce in the set {gl, g2, .. . ,  gs} the law of reduced 
multiplication (Shubnikov & Koptsik, 1974) then the 
set {gl, g2, -.., gs} is said to form a group by modulus 
and is denoted by G(mod H). 

Since the laws of multiplication in the groups G and 
G(mod H) are different, in general, the group G(mod 
H) is not a subgroup of G. However, if H V3 G(mod H) 
= hi = gl = E E G, then an extension G of H may be 
constructed as the product of the groups H and G(mod 
H) by carrying out the pairwise combination of all the 
elements h i, h 2, ..., h m E H with the elements gi, g2, ..., 
gs E G(mod H) and uniting the results so obtained: 

G = {h ig  l, h2g l, . . . ,  hmgl;  hig2,  . . . ,  hmg2; . . . ;  

h l g ~ , . . . , h m g s } .  (1) 

If G(mod H) is a subgroup of G, then the extension 
(1) is an ordinary product and G is called symmorphic. 
Since G(mod H) is not necessarily a subgroup of G, the 
extension (I) is called a quasi product (Shubnikov & 
Koptsik, 1974) and G is called non-symmorphic. The 
quasi direct product or the quasi semi-direct product is 
determined by the multiplication law of the binary 
elements htg; E G. 

If G(mod H) happens to be a subgroup of G, then 
the quasi direct product and quasi semi-direct product 
reduces to the ordinary direct product and semi-direct 
product respectively; we write G = H A K for the 
semi-direct product and G = H o G (mod H) for quasi 
semi-direct product. 

* The earlier draft of this paper was reviewed by Professor V. 
Koptsik who has kindly cited a great deal of work in the existing 
literature leading to the improvement of the manuscript. 
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From what has been outlined above, it can be seen 
that the traditional 230 Fedorov space groups, which 
were broadly categorized into symmorphic and non- 
symmorphic groups, can be expressed in terms of the 
semi-direct and quasi semi-direct products respectively 
once the constituent normal subgroups H are identified. 
The symmorphic space group F432 and the non- 
symmorphic one Fd3m necessary for the subsequent 
discussion are dealt with below. 

For the symmorphic space group F432, the sym- 
morphic space group F23 consisting of the elements:* 
E; 16C+j; 6C2m;  16Cgfi 6C 2m;  6T; 6C 2m ;  16C~); 6C2m;  

1 6 C + j ;  T123 is a subgroup of index 2 (hence a normal 
subgroup). Hence with F23 as the chosen normal 
subgroup H, it can be seen that F432 = EH U C2aH.t 
The coset representatives E , C 2 a  form a group with the 
same multiplication law as that of the group F432 and 
we call this group ~.:l: These groups F23 and ~ satisfy 
all the requirements of a semi-direct product and we 
write F432 = F23 A 2. In the case of the non- 
symmorphic space group Fd3m, the group Fd3: E; 
16C~j; 4i; 16C~j; 16S+j; 12C2m; 16S+j; 24am; 6T; 
12C2m;  16S~j; 4i; 16C~); 16S~j; 16C~); Tt23 is a 
normal subgroup and the factor group Fd3m/Fd3 can 
be expressed as E (Fd3) U C2a(Fd3).§ Unlike the 
previous case, the coset representative E ; C 2 a  here will 
not form a group with the induced composition in 
Fd3m. On the other hand, they form a group by 
modulus and hence G = Fd3m can be expressed as the 
quasi semi-direct product: Fd3m = Fd3 o Fd3m (mod 
Fd3). For the rest of the cubic space groups the results 
obtained are tabulated in Table 1. 

3. The P-symmetry groups and their extensions 

Zamorzaev (1967) introduced the concept of P- 
symmetry and classified groups as major, minor and 
intermediate. Let us recall the essentials of the so-called 
geometric approach to the classification of P- 
symmetries: To every point of a geometric figure we 
assign at least one of the indices 1, 2, ...,  p and we use 
the term P-symmetry transformation to denote an 
isometric transformation of the figure, which trans- 
forms each point of the figure with index i into a point 
with index k i ~ the permutation of the indices 

* Throughout  this paper, elements in the respective conjugate 
classes of  the space groups are expressed in point-symmetry 
operat ion only, dropping the corresponding translational symmetry.  
These elements should not, however, be misunderstood as simple 
point-group operations. The  suffixes j , m , p  used in denoting the 
elements in the respective conjugate classes stand for one or more of  
the ax es j  = 1,2,3,4; m = x , y , z ;  p = a,b,c,d,  e f .  

I" The coset representative C2a actually stands for the element 
(c2./ooo). 

2 denotes a space group of  the same order as that  of  the point 
group 2 with the elements E,  ( C 2 J 0 0 0 ) .  

§ In this case, the coset representative C2, stands for the element 

(c~/t-t4). 

Table 1. Symmorphic and non-symmorphic cubic space 
groups as semi-direct and quasi semi-direct products 

Symmorphic  cubic space Non-symmorphic  cubic space group G 
group G as semi-direct as quasi semi-direct product  

product  G = H A K G = H o G (mod H)  

P432 =P23/X 
F432 = F23 A 
/432 = 123 A 
P~,3m = P23 A th 
F43m = F23 A Fn 
I~,3m = I23 A th 
Pm3m = Pm3 A 
Fm3m = Fm3 A 
Im3m = Ira3 A 

P4232 = P23 o P4232 (mod P23) 
F41 32 = F23 o F41 32 (mod F23) 
P4332 = P213 o P4332 (rood P213) 
P4132 = P213 o P4132 (mod P213) 
14132 = I213 o 14t32 (mod I213) 
P43n = P23 o P43n (rood P23) 
F43c = F23 o F43c (mod F23) 
I43d = 1213 o I43d (rood I213) 
Pn3n = Pn3 o Pn3n (mod Pn3) 
Pm3n = Pro3 o Pm3n (mod Pro3) 
Pn3m = Pn3 o Pn3m (mod Pn3) 

Fm3c = Fro3 o Fm3c (rood Fro3) 
Fd3m = Fd3 o Fd3m (mod Fd3) 

Fd3c = Fd3 o Fd3c (rood Fd3) 
Ia3d = Ia3 o la3d (mod Ia3) 

Note: The symmorphic cubic space groups Fm3, Ira3, Pro3, / '23, /23,  
F23 and the non-symmorphic ones Ia3, Pa3, Fd3, 12~3, P2~3, Pn3. with 
whose 1D complex IRs are associated the minor quasisymmetry groups, are 
not considered here because, in these cases, the identification of the 
appropriate normal subgroups H is facilitated by collecting all the elements 
of G contained in the various conjugate classes in the chosen 1D complex 
IR with which the character + 1 is associated. 

1 2 ... p )  
k 1 k 2 . . .  kp E P. We shall call a group of 

P-symmetry transformations a complete P-symmetry 
group if the group Pt of permutations of indices 
involved in the transformation of the group coincides 
with P. Such groups are divided into major, minor and 
intermediate groups when the subgroups of the per- 
mutations Q = G N P coincide with P, consist of 
identity transformation or are a non-trivial subgroup of 
P, respectively. 

As already explained, the idea of P-symmetry has 
been extended and generalized by various authors in 
various ways. Zamorzaev & Palistrant (1980) and 
Koptsik (1980a) developed a geometric approach to 
the classification of P symmmetries by employing a 
vector interpretation of the P-symmetries and suggested 
a method of constructing 122 special types of 4D 
crystallographic point symmetry groups with a par- 
ticular 3D plane in the form of symmetry and 
antisymmetry point groups. 

The applications of generalized colour symmetry and 
the interesting features of n-dimensional crystal- 
lography have led to a complete derivation of the 
p'-symmetry space groups G~' for p -- 3,4,6 (Palistrant, 
1980), which, along with the classical Fedorov groups 
and their generalizations with simple and double 
antisymmetry, together with P-symmetry groups, was 
used in the study of 5D crystallographic symmetry 
groups with a special 3D plane (G53). Palistrant (1981) 
also made a complete review of the crystallographic 
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point groups of the 32 crystallographic P-symmetries 
and this review, with an appropriate geometric interpre- 
tation of the indices and signs made it possible for him 
to describe all six-dimensional crystallographic point 
symmetry groups with a particular three-dimensional 
plane (G630). 

Recently, a geometric method for classifying the 
crystallographic P-symmetries which makes it possible 
to describe the essentially new categories of multi- 
dimensional symmetry groups by means of the P- 
symmetry groups was presented by Zamorzaev & 
Palistrant (1981). Shubnikov & Koptsik (1974) and 
Koptsik (1975) have shown that the interchange of the 
operators 1' ~ 1" places the magnetic and phase- 
symmetry groups in one-to-one correspondence allow- 
ing these magnetic and phase-symmetry groups to be 
considered physically different interpretations of the 
colour P-symmetry group and the Wp-symmetry group. 
A method of defining the space-symmetry group of a 
model as a semi-direct product was also presented in 
the novel work of Koptsik (1975, 1980a). 

It must be emphasized that the P-symmetry groups 
G tp~ are the special case of the wreath product GtW~ J c_ 
P W  D_ G and that the IRs of the generating groups G 
do not cover all the categories of the G tp) (Koptsik, 
1980a,b,c). 

4. Construction of minor quaslsymmetry space groups 
as semi-direct and quasi semi-direct products 

The fundamental quasisymmetry theorem of Zamor- 
zaev (1967) is taken as defining the concept of major, 
minor and intermediate quasisymmetry groups. Any 
symmorphic space group G can be written as the 
semi-direct product: G = S  A T and through the results 
of Krishnamurty et al. (1978a), § 2, one obtains the 
different types of quasisymmetry groups G' generated 
by G, depending upon the nature of the constituent 
quasisymmetry groups S '  and T' generated by the 
appropriate normal divisor S and the subgroup T in the 
semi-direct product G' = S '  A T'. On the other hand, 
one can obtain the corresponding quasisymmetry 
groups with the non-symmorphic space groups as 
generators invoking Krishnamurty et al. (1980). 
Construction of minor quasisymmetry space groups 
only is undertaken in this paper, since these groups 
only can be associated with the IRs of the respective 
generator groups. The method of construction is 
exemplified below. 

Case 1: Symmorphic cubic space groups 

As an example the group F432 is illustrated for the 
considered boundary condition, the relevant portion of 
the character table of which is given in Table 4. From 
Table 1, F432 -- F23 A ~. Let us consider the group 

F23. For the cubic space group F23, the space group 
F222 is a normal subgroup of index 3 and F23 = F222 
A 3. The group F222' :  F222 I is a major/minor 
group with F222 as generator and with {I} as the 
permutation group.* Also the group 3t3): El; C+~ 
(123); C~~ (132) is a minor quasisymmetry group with 
the group ~ consisting of elements E, C+31, C~-~ as 
generator and wi th / ,  (123), (132) as the permutation 
group. The semi-direct product F222'  A 3t3): El; 
16C+j (123); 6C2m ; 16C~-j (132); 6C2m ; 6T; 6C2m ; 
16C~j (132); 6C2m; 16C+j (123); T~23 is a full minor 
quasisymmetry group with F23 as generator and with 
A 3 as the permutation group. Denote this group as 
F23 t3). Also, the group ~tEj: EI; C2a (13) can be seen to 
be a minor group with 2 as the generator and P2: I, 
(13) as the permutation group. Hence, by Theorem 1 of 
Krishnamurty et al. (1978a), the semi-direct product 
F23 taJ A ~t2) is a full minor quasisymmetry group with 
F432 as generator and Pa as the permutation group. 
We shall denote this group by F432". The minor 
quasisymmetry groups obtained for the rest of the 
symmorphic cubic space groups are tabulated in Tables 
6 and 7. 

Case 2: Non-symmorphic space groups 

To illustrate the case of non-symmorphic space 
groups, consider the cubic space group Fd3m. From 
Table 1 we have Fd3m = Fd3 o Fd3m (mod Fd3). For 
the non-symmorphic space group Fd3, the non- 
symmorphic groups Fddd: E; 4i; 12C2m; 240"m; 67"; 
12C2m; 4i; T123 and Fdd2 :E ;  12C2m; 6T; 12C2m; T123 
from normal subgroupst of index 3 and index 6, 
respectively. The group Fd3 can be expressed as Fd3 = 
Fddd o Fd3 (mod Fddd) and Fd3 = Fdd2 o Fd3 (mod 
Fdd2). The group Fdd2' : EI; 12C2mi; 6TI; 12C2mi; 
7"1231 is a major/minor group with Fdd2 as generator. 
The group Fd3 t6) (mod Fdd2): El; S+~ (123456); C+1 
(135) (246); i (14) (25) (36); C~-~ (153) (264); S~1 
(165432) is a minor group with Fd3 (mod Fdd2) as 
generator. The quasi semi-direct product of these 
groups Fdd2' o Fd3 t6) (mod Fdd2): El;  16S6+j 
(123456); 16S6~ (123456); 16C3~ (135) (246); 16C3+j 
(135) (246); 8i (14) (25) (36); 24tr m (14) (25) (36); 
16C~ (153) (264); 16C~ (153) (264); 16S~ (165432); 
16S~ (165432); 12C2m/; 12C2m/; 67"1; T~231 is a minor 
quasisymmetry group with Fd3 as generator. Denote 
this group Fd3 t6). Similarly, the quasi semi-direct 
product of the groups Fddd' and Fd3 ~3~ (mod Fddd) 
consisting of elements: El;  16C3j (123); 16C~j (123); 
16S+j (123); 16S+j (123); 16S~j (132); 16S~j (132); 

* This group, however, should not be misunderstood as the 
Shubnikov space group F222' associated with one of the 1D 
alternating IRs of the group F222. 

~f The actual normal subgroups may be either the groups Fddd, 
Fdd2 or groups just isomorphic to them in some non-standard 
setting. 



872 QUASISYMMETRY (P-SYMMETRY) IN CRYSTALS 

16C+j (132); 16C+s (132); 4ii; 12C2mi; 24amI; 6TI; 
12C2mI; 4iI; T~23I also forms a minor group with Fd3 
as generator and A 3 as the permutation group. Call this 
group Fd3 (3). 

With the group formed by the coset representative in 
the factor group Fd3m/Fd3: (E; C2a) as generator, the 
group El; CEa (13) = Fd3m (2) (mod Fd3) can be seen 
to be a minor group with P2 as the permutation group. 
The quasi semi-direct product: Fd3 °) o Fd3m (2) (mod 
Fd3) forms a minor group with Fd3m as generator 
which we denote by tFd3m". Similarly, the quasi 
semi-direct product of the minor group Fd3 (6) with the 
minor group Fd3m (2) (mod Fd3) also forms a minor 
group with Fd3m as generator and it is denoted by the 
symbol 2Fd3m". For the rest of the non-symmorphic 
cubic space groups, the results obtained are tabulated 
in Tables 6 and 8. 

5. Association of the minor quasisymmetry cubic 
space groups with the IRs of the generator groups 

The relevant portion of the character table of the 
symmorphic space group F23 for the chosen boundary 
condition is provided in Table 2. From § 4, the group 
F23 o) = F222' A ~t3). For the group F23, the group 
F222 forms a normal subgroup of index 3 and the 1D 
complex IRs of the factor group F23/F222 engender 
the complex IRs 1E and 2E of F23. Hence we associate 
F23 (3) with the IR ~E of F23. For non-symmorphic 
space groups also, as far as the association of minor 
groups with the non-degenerate IRs, similar results to 
the case of symmorphic groups are obtained. For 
example, consider the group Fd3. It is seen that the 
group Fddd forms a normal subgroup of index 3 to Fd3 
and the 1D complex IR ~E of Fd3/Fddd engender the 
1D complex IR tE~ of Fd3. Hence we associate the 
minor group Fd3(3): Fddd' o Fd3 (3) (mod Fddd) 
obtained in § 4 with the 1D complex IR IE~ of the group 
Fd3. By a similar argument the minor group Fd3t°: 
Fdd2' o Fd3 ~° (mod Fdd2) can be associated with the 
1D complex IR 1E 2 of Fd3. The relevant portion of the 
character table of Fd3 is shown in Table 3. 

It is well known that the irreducible representations of 
the space groups can be obtained from those of the 
AIRs (G k' s) of the little groups in conjunction with the 
solvability property (Raghavacharyulu, 1961) using the 
composition series (Lomont, 1959). The association of 
the obtained minor quasisymmetry groups with the 1D 
complex and 2D real IRs of the generator groups is 
completed in this section with the help of the little 
groups and their 1D AIRs. 

Case (i): Non-degenerate IRs 

In the case of the non-degenerate IRs of the space 
groups, it is observed that the little groups (L) always 
coincide with the generating space group G itself, and 
the kernels (K) coincide with the chosen normal 
subgroup H. As the IRs of the factor group G/H _~ 
L / K  engender those of the IRs of the same nature as G, 
the properly chosen normal subgroup H itself facili- 
tates the required IR of G, which is to be engendered. 

Case (ii): Degenerate (2D) IRs 

In the case of 2D real IRs it is observed that the 
normal subgroup H in the considered semi-direct 
product as well as in the quasi semi-direct product 
coincide with the little group (L) and the 1D complex 
IRs of the normal subgroup induce the appropriate 2D 
real IRs of the considered generator group. This is 
illustrated below with the cubic space group F432 = 
F23 A 2. It can be seen that F23 is a little group of 
F432 and the 1D complex IR 1E ofF23 is an AIR that 
induces the 2D real I R E  ofF432 (Tables 2 and 4). The 
minter group F23 °) generated with F23 is associated 

Table 2. Relevant portion of  the character table ofF23 

16 6 16 6 6 6 16 6 16 1 
F23 E C?,] C2m C3j C2m T C2m C3j C2m C+j T 

I E 1 to 1 092 1 1 1 0`)2 1 to 1 
2E ! o.72 1 to l l I to 1 09 2 1 

Table 3. Relevant portion of  the character table of  Fd3 

Fd3 

tE~ 
ZE~ 
IE z 
2E2 

16 
Ch 

O9 
0.) 2 

0`) 
092 

16 4 16 16 12 24 6 12 16 16 
C 3 j  i S ~  S ~ j  C2m a m T C2m S 6 j  36.] 

0`) 1 0`) co 1 1 1 1 to2 0`)2 
toz 1 0`)2 0`)2 1 1 1 1 0`) 0`) 
0`) --1 --0`) --0`) 1 --1 1 1 _ t o 2  _ t o 2  
to2 - 1  _092 _0`)2 1 - 1  1 1 --0`) --0`) 

4 16 16 1 
i C~ C~s T 

1 to2 to2 1 
1 0`) 0`) 1 

- 1  0`)2 092 1 
--1 co 0̀) 1 

Table 4. Relevant portion of  the character table ofF432 

F432 

E 

32 24 12 6 12 6 24 6 12 24 
C~ C+m C2v C2., C2,. T C2 v C2m C2 v C4~ 

-1 0 0 2 2 2 0 2 0 0 

32 
Ch 

-i  
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Table 5. Relevant portion o f  the character table o f  Fd3m 

12 32 12 48 4 12 32 24 48 24 12 24 6 12 32 4 12 32 1 

F d 3 m  E Oar C~j C2m S~m i C2v S ~  a m C~m aap C2m C2p T aap C ~  i C2v S ~  T 

E t 2 0 - 1  2 0 2 0 - 1  2 0 0 2 0 2 0 - 1  2 0 - 1  2 
E~ 2 0 - 1  2 0 - 2  0 1 - 2  0 0 2 0 2 0 - 1  - 2  0 1 2 
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Table 6. Minor  quasisymmetry cubic space groups 
associated with the 1D complex IRs  o f  the cubic space 

groups containing 1D complex IRs  

Number of 
pairs of ID Minor quasisymmetry groups 

Cubic space complex IRs associated with the pairs of 1D 
group G of G complex IRs of G 

P23 2 P23O); P23 (6~ 
F23 1 F23 (3} 

123 2 123(3); 123 (6) 
I2~ 3 2 1213(3~; 1213 (6) 
P213 2 P213(a~; P213 (6) 
Pm3 4 Pm3(3~; IPm3(6); 2pm3(6~; 3pm3(6~ 
Im3 4 Im3(3); ~1m3(6~; 2Im3(~); 3Im3 (~ 
Pn3 4 Pn3(3); 'Pn3(~; 2pn3(~); 3pr/3(6) 
Fm3 2 Fm3(3~; Fm3 (~) 
Fd3 2 Fd3(3); Fd3 (~ 
Pa3 2 Pa3(3~; Pa3 (~ 
Ia3 4 Ia3(3); Iia3(6); 2Ia3(~); ~Ia3 (6~ 

Notes: In column 1, the cubic space groups G containing pairs of ID 
complex IRs is given in International notation. In column 2 is given the 
number of  pairs of ID complex IRs contained in G for the considered 
boundary condition. In column 3, the minor groups obtained as semi- 
direct or quasi semi-direct products which are associated with the pairs of 
1D complex IRs are tabulated. 

The minor quasisymmetry groups associated with the 1D complex IRs 
of  the cubic space groups are given International symbols (developed in 
respect of  the colour groups) since these groups denote the polychromatic 
space groups with colour value given by the number indicated in brackets. 

with the 1D complex IR IE of F23 and as this 1D 
complex IR IE of F23 in turn induces the 2D I R E  of 
F432,  we associated F 4 3 2 "  with the 2D real IR E of 
F432.  

Similarly, in the case of the non-symmorphic space 
group Fd3m (Table 5), the group Fd3 can be seen to be 
a subgroup of index 2 and the 1D complex IR 1E~ of 
Fd3 is an AIR that induces the 2D IR E 1 of Fd3m.  
From what has been discussed earlier, the minor group 
associated with the 1D complex IR1E of Fd3 is Fd3 (3). 
But this 1D IR 1E of Fd3 induces the 2D IR E~ of 
Fd3m.  Hence, we associate the minor group ~Fd3m": 
Fd3 °) o Fd3m ~2) (mod Fd3) with the IR E~ of Fd3m.  
By a similar argument the other minor group 2Fd3m": 
Fd3 ~6) o Fd3m ~2) (mod Fd3) can be associated with the 
2D I R E  2 of Fd3m.  The results obtained in the case of 
other cubic space groups are tabulated in Tables 6, 7 
and 8. 

Notes to Tables 2-5 

In Tables 2-5,  the numbers given in different 
columns indicate the order of the various conjugate 

Table 7. Minor  quasisymmetry cubic space groups 
associated with the 2D real IRs  o f  the symmorphic 

cubic space groups 

S y m m o r p h i c  M i n o r  q u a s i s y m m e t r y  
cub ic  s p a c e  2 D  I R  Li t t le  g r o u p  g r o u p  a s s o c i a t e d  with 

g r o u p  G F o f  G L (or  ~ L )  the  2 D  I R F o f  G 

P432 E I P23 IP432" = P23 (3) A ~[(2) 
E 2 P23 2p432" = P23 (~) A ~(2) 

F432 E F23 F432"  = F23 (3) A ~[(2) 
I432 E l 123 11432" = 123 (3~ A ~(2) 

E 2 123 21432" = 123 (6) A ,~[(2) 
P43m E l P23 1P2~3m" = P23 °J A rh (2~ 

E 2 P23 2p43m" = P23 (6~ A rh (2) 
F2~3m E F23 F213m" = F23 (3~ A rh (2) 
143m E l 123 1143m" = 123 (3) A rh (2) 

E 2 I23 2143m" = 123 (6) A th (2) 

Pm3m E l Pm3 1Pm3m" = Pm3 °) A ~(2~ 
E 2 Pm3 2pm3m" = IPm3(~J A ~(2~ 
E 3 Pm3 3Pm3m" = 2Pm3(6~ A ~(2~ 

E 4 Pro3 4Pm3m" = 3Pm3(6) A ~[(2) 
Fm3m E l Fro3 IFm3m" = Fro3 (3~ A ~(2~ 

E 2 Fm3 2Fm3m" = Fro3 (6) A ~(2~ 
Im3m E, lm3 l lm3m" = lm3 (3~ A ~(2~ 

E 2 Ira3 2Im3m" = Ilm3(6~ A ~(2~ 
E 3 lm3 31m3m" = 2Im(6} A ~(2) 
E 4 lm3 4Im3m" = 31m3 (6~ A ~(2) 

classes, and the element placed under each number 
denotes the representative of the respective class of the 
group G under consideration. 

The character tables of all the cubic space groups are 
constructed by the authors on the basis of  the method 
suggested by Raghavacharyulu (1961) and Bradley & 
Cracknell (1972), for the boundary condition T~ = T~ 
= T~ = E. For want of space, only the relevant 
portions of those required for our discussion in §§ 4 
and 5 are furnished here. 

The symbols j ,  m, p denote the respective crystal- 
lographic axes, they stand for one or more of the 
following axes: m = x,y,z;  j = 1,2,3,4 and p = 
1,2,3,4,5,6. 

Notes to Tables 7 and 8 

In column 1 of Table 7, the symmorphic cubic space 
group G and, in that of Table 8, the non-symmorphic 
cubic space group G, containing a 2D IR, are given in 
International notation. In column 2 is given the actual 
2D IR F of G to which a minor quasisymmetry group 
is associated and in column 3 is indicated the little 
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Table 8. Minor quasisymmetry cubic space groups 
associated with the 2D real IRs of the non-symmorphic 

cubic space groups 

NoN- 
symmorph ic  2D Little Minor quas i symmet ry  group 
cubic space I R  group L associated with the 2D 

g r o u p G  F o r G  ( o r L )  I R F o f G  

Pn3n E~ Pn3 ~Pn3n" 

Ez Pn3 ZPn3n" 

Fm3c  Ea Fm3 IFm3c" 

E z Fm3 ZFm3c" 

F43c E l F23 F43c"  

F4~32 E t F23 F4~ 32" 
I43d  E l I213 ~I43d" 

E z I2~3 2143d" 

P4~32 E~ P2a3 1p4332" 
Ez P213 2P4332" 

P4~32 E t P2~3 ~P4~32" 
E 2 P2~ 3 zP4z 32" 

Pm3n E~ Pm3 ~Pm3n" 

E~ Pm3 2Pm3n" 

E 3 Pm3 apm3n" 

Fd3m E l Fd3 ~Fd3m" 

E z Fd3 2Fd3m" 

Fd3c E~ Fd3 ~Fd3c" 

E2 Fd3 ZFd3 c" 

l a 3 d  E 1 Ia3 ~Ia3d" 

E 2 Ia3 2Ia3d" 

E~ Ia3 3Ia3d" 

P43n E~ P23 IP43n" 

E 2 P23 2P43n" 

P4z32 E t P23 ~P4z32" 
E 2 P23 zP4~32" 

I4t32 E~ I2~3 ~/4t 32" 
E z I2~3 zI4~32" 

Pn3m Ez Pn3 ~Pn3m" 

E 2 Pn3 2Pn3m" 

E 3 Pn3 ~Pn3m" 

E 4 Pn3 4pn3m" 

= Pn3 t3) o Pn3n t2~ (mod Pn3) 

= IPn3t6~ o Pn3n t2~ (mod Pn3) 

= Fro3 ~3~ o Fm3c  ~z) (rood Fra3) 

= Frn3 ~3~ o Frn3c C2~ (mod Fro3) 

-- F23 ~6~ o F43c t2~ (mod F23) 
= F23 ~3~ o F4~32 ~z) (rood F23) 
= I2~3 ~3) o I43d  t2) (rood I2~3) 
= I213 ~6~ o I43d t2~ (mod I213) 
= P213 ta~ o P4332 t2) (mod P2t3) 
= P213 t6) o P4332 ~2) (mod P2~3) 
= P2x3 ~3~ o P4132 t2~ (mod P213) 
= P213 t6~ o P4132~2) (rood P2a3) 
= Prn3 ~3~ o Prn3n ~2) (rood Pro3) 
= ~Prn3 ~6~ o Pm3n  ~2~ (rood Pm3)  

= 2prn3t~ o Pm3n t2~ (rnod Pro3) 
= Fd3 ~3~ o Fd3rn tz~ (rood Fd3) 

= Fd3 ~6~ o Fd3rn ~2~ (mod Fd3) 

- Fd3 t3~ o Fd3c tz) (rood Fd3) 

= Fd3 ~ o Fd3c ~2~ (rood Fd3) 

-- Ia3 t3) o Ia3d  t2) (rood Ia3) 

= ~Ia3 t~) o l a 3 d  t2~ (rood Ia3) 

= 21a3~ o Ia3d ~z) (rood la3)  

= P23 t3) o p2~3n tz) (mod P23) 
= P23 ~ o P43n tz~ (mod P23) 
= P23 ta~ o P4z32~z~ (mod P23) 
= P23 t~ o P4z32 ~ (mod P23) 
= 1213~3~ o I4t32 t~ (rood 12~3) 
= I2~3 ~ o I4t32 t2~ (mod I2~3) 

= Pn3 t3) o Pn3m ~2~ (rood Pn3) 

= tPn3 t6) o Pn3rn t2~ (mod Pn3) 

= ZPn3~6~ o Pn3rn Iz~ (mod Pn3) 

= ~Pn3 t~ o Pn3m tz~ (rood Pn3) 

group L (or the group ~ L), the 1D AIR of which 
induces the 2D IR F of G. 

The minor group associated with the 2D IR F of 
G--and  thus denoted as G " - - i s  given in the last 
column as the semi-direct/quasi semi-direct product of 
two minor groups: the first one a minor group 
associated with the 1D AIR of the little group L (which 
happens to be the normal subgroup H in the semi- 
direct/quasi semi-direct product of G) that induces the 
2D IR F of G (in the notation developed in Table 6) 
and the latter also a minor group which can be viewed 
as a double-coloured group generated by the corre- 
sponding symmorphic space group T or the non- 
symmorphic space group G (mod H) in some non- 
standard setting which depends upon the groups G and 
H in the semi-direct/quasi semi-direct products, 
respectively. 

6. Discussion 

The minor quasisymmetry cubic space groups con- 
structed as semi-direct products and quasi semi-direct 

products and associated with the 1D complex IRs of 
the cubic space groups discussed here are nothing but 
the polychromatic space groups in which each colour 
may represent a transformable physical property. Also, 
the l l91 magnetic space groups associated with 
distinct alternating IRs of the Fedorov space groups 
can be seen to be particular realizations of the minor 
quasisymmetry space groups with a suitable per- 
mutation group P2" 

The method of constructing quasisymmetry groups 
indicated in § 4 and their association with the 1D 
complex and 2D real IRs of the cubic space groups 
explained in § 5 can be extended to the rest of the 
synogonies, and results can be obtained in an 
analogous manner. In fact, this method can be 
extended for any other boundary condition. 

The concept of semi-direct product and quasi 
semi-direct product has gained sufficient importance in 
recent years (Altmann, 1963a,b; Shubnikov & 
Koptsik, 1974) and the physical significance of an AIR 
that induces the degenerate IR of a generator group is 
already appreciated (Krishnamurty, Prasad & Rama 
Mohana Rao, 1978b). Also it is easier to deal with a 
1D IR than with a degenerate IR directly. 

Several possible applications of the P-symmetry 
groups have been mentioned (Zamorzaev, 1967; Rama 
Mohana Rao, 1980). One of these is the use of coloured 
symmetry space groups in the derivation and descrip- 
tion of similarity symmetry space groups as has been 
done in the case of coloured symmetry point groups. 
Also, the idea of P-symmetry may be useful in the 
description of stem and layer symmetry groups in 
higher-dimensional space. An example of physical 
applications is that of the magnetic symmetry proposed 
by Naish (1963). The multiplicative groups constructed 
by Naish are nothing but the quasisymmetry groups. In 
describing the magnetic symmetry of screw (helicoidal) 
structures, the periods of which do not coincide with 
the periods of the atomic structures, the traditional 
magnetic groups (Shubnikov groups) are not suitable, 
and these quasisymmetry groups are found to be of 
much use. 

The possible stationary magnetic moment con- 
figurations in crystals cannot be completely described 
by the classical and Shubnikov groups. Only the 
multi-colour group apparatus of the P-symmetry 
structure alone can adequately cover all the magnetic 
properties of crystals. A concrete example of this was 
provided with the help of the antiferromagnetic 
structure of hematite in the range of 253 < T < 948 K 
by Koptsik & Kuzhukeev (1972). 

Construction of minor quasisymmetry groups and 
their association with the 1D complex and 2D real IRs 
only are dealt with, in this paper, for, in the case of 
higher-dimensional IRs (d > 2), the construction of 
minor quasisymmetry groups and their association with 
the degenerate IRs with the help of the 1D AIRs 
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cannot  be carried out s imultaneously through the 
present technique. 
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sity, Waltair ,  for their kind interest in this work and for 
the helpful discussions the authors  had with them at 
several stages of  this work. The first author  (KRM)  is 
grateful to the Indian Science Congress  Associa t ion for 
the financial assistance provided to him through a 
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